

Assetto Corsa Pipeline for Community Modders R2.0

1. Requirements
a. Software
b. Import/export settings

2. Basic Guidelines
a. Project and folder structure
b. Models required, LODs
c. Tri-counts
d. Scripts to manage LODs

3. Scene Structure
a. Essential nulls and hierarchy
b. Preparing the car model in the scene
c. Additional nulls for animations

4. Functional Mesh Elements
a. Analog instruments
b. Digital instruments
c. Digital panels
d. Seatbelts
e. Lights
f. Skinned mesh
g. Driver

5. Functional Textures
a. Shadows
b. Mirrors
c. Reflections
d. Damage

6. Texturing Guidelines
a. Texture requirements
b. PSD and DDS naming conventions
c. texture optimization
d. AO baking

7. Animations
a. Suspension animations
b. Clips and naming conventions
c. Exporting animations

8. Materials and Editor
a. Material guidelines and naming conventions
b. General guidelines
c. Basic guides to the KS EDITOR

9. In-game Console Commands

BEFORE YOU START:

This is an updated version of the original car-pipeline-1.03 document that was released
alongside the game’s original release. The car production pipeline has gone through massive
changes since then, cars included in the original game had vastly different requirements than
current releases, which is why an update has been due.

This document contains information that matches the quality requirements for official KUNOS
releases since the Japanese Pack DLC, through the Porsche Packs and the most recent Ready
To Race DLC packs. It is safe to say that the current requirements are unlikely to change in the
remaining lifecycle of Assetto Corsa.

However, some new functions (especially digital display scripts etc.), are likely to be added,
which is why we recommend you visit the official support forum to be up to date on
developments in this respect.

Note that due to the nature of the development cycle, we have continued to add new functions
and features into the simulator, which is why this document is not comprehensive. However,
each section will include a link to the most relevant community threads on the official support
forum, where community artists can find, and also ask for, support to guide them through their
projects. Because the core engine has not changed, some parts of the document, such as
animations and general model management, remain unchanged.

For compatibility purposes, you can still find the contents of the old sdk in an archive within the
new SDK folder.

Note that most pieces of advice in this document are intended for our internal professional
artists. Naturally, the creation of community-made content is not so strict and it’s down to your
preference and expectations how much you wish to stick to it.

Also note that Kunos staff artists do not work with Blender, so guidelines and rules do not
always transfer correctly to that software and thus we have no experience in helping you find
the right methods for the creation of community content. Again, we can only urge you to visit the
modding section of the official support forum to find information on Blender.

IMPORTANT: In addition to this document, the sdk/dev folder contains a number of useful
folders with examples and guides for scene hierarchy, various animations, and a driver rig to be
used in 3ds Max.

1. REQUIREMENTS

B. IMPORT/EXPORT SETTINGS

I. We export all files in the format supported by the FBX version up to the 2014/2015
plugin for XSI and 3dsMAX. Avoid using attributes that are not supported by this export
format (such as physics constraint or mesh smooth operators etc.) The 2016 plugin is
unsupported!

II. The FBX data used by the AC engine are following:

● Polygon mesh
● Normals (custom normals are supported)
● Texture coordinate UV (one layer only is read from the AC engine)
● Bones with vertex weight
● Nulls/dummies/nodes
● Hierarchy structure
● Animation data
● Basic mesh transformation (scale, rotation, position)

NOTE: The AC engine does not support 2 OBJECTS with the same NAME in the same
model. This will cause the game to crash. Make sure that you pay attention to this rule. Of
course, when you have multiple LODs in the same scene, you have to use the same
names for functional objects and dummies, but there must not be matching names inside
the same export (i.e. within LOD A for example).

Every mesh MUST have one TEXTURE UV set.
The mesh must be (when possible) in quads. Do NOT triangulate the mesh if it is not necessary.
For a skinned mesh you can have as many bones as needed, but every single vertex can be
influenced by up to 4 bones and not more.

During the import process the AC Editor ignores all unnecessary data included in the FBX.
Below are the settings to use to correctly export the assets with the 2 supported programmes.
Remember to set up your system units before exporting (in XSI it is not required).

For 3DS Max the following settings are required:

Make sure to set up the system units BEFORE creating the dummies and exporting the car.

As a limitation in 3DS Max, if the system unit scale is in mm or cm, even if the dimensions are
correct, the dummies of the exported model will still have the wrong scale. If the model and the
dummies have been created in the wrong scale, one remedy is to export the model as an .fbx
and re-import it in a scene using the correct system unit scaling.

NOTE: Make sure that you reset Xform after every modification that affects scale. It is advised
not to scale suspension and wheel nulls/dummies.

In Autodesk SOFTIMAGE XSI 2014 use the following settings:

In Autodesk 3DS MAX 2013 use the following export settings:

a) to export the base asset with no animation b) to export animated nulls/dummies:

Important:

The mesh must be scaled 1:1, rotation must be frozen on the mesh (reset Xform in 3DS Max)
and objects should not have animated transformations. Only the dummies/nulls may have
different transformations. When they are animated they can be rotated and scaled, and some of
them can act as bones for the skinned mesh.

2. BASIC GUIDELINES

PROJECT AND FOLDER STRUCTURE

A vehicle project consists of a total of 5 models, including the high-poly model, 3 additional
Level of Detail (LOD) models and a low-poly collider. The naming of the source files must be
consistent with the make/type of the vehicle at hand.

The recommended way to set up your project folder is the following:

The .ini files are created by the AC Editor and include the object and shader properties for the
models. The folder called texture is obligatory for the editor to load the texture files.

The .kscp file is a project file created by the AC Editor.

BUDGET

The following triangle-counts are recommended in most cases.

Exterior:
LOD A exterior: 125,000 triangles
LOD B exterior: 20,000-25,000 triangles
LOD C exterior: 10,000-12,000 triangles
LOD D exterior: 2,000-3,000 triangles (as low as possible while you can keep the main shape)

Interior:
HR Cockpit: 125,000 triangles
LR Cockpit: 7,000-10,000 triangles
LR Cockpit in LOD B: 4,000 triangles (as low as possible while keeping a decent quality)
LR Cockpit in LOD C: 2,000 triangles (some detail must remain above window level)

Of course, these numbers are generic and apply to most tin-top cars with elaborate interiors.
Open-wheelers with small cockpits can use fewer triangles for the interior and more for details
on the exterior, such as the engine and suspension. It is up to the judgement of the modeller to
use this budget in accordance with the complexity of the model, but it MUST be optimised as
much as possible without hurting the overall quality.

When producing the LODs, the most important guideline to follow is to reduce draw calls
(number of objects) as well as the number of separate materials. For example, the LR interior
should only use 1 material, but if there are customizable parts (such as different interior colour
options, it must be possible to use the detail texture defining the colour on the LR interior model,
too.

By LOD C, the number of materials and objects should drastically drop, while for LOD D no
more than a maximum of 2 materials and a similar number of objects (no rotating wheels are
required) should be used.

Here are some examples for the progressive degradation of the mesh in the LOD steps:

The same guidelines apply for the interior:

VERY IMPORTANT:
NOTE: Keep in mind that the LOD B will be visible at a distance of 15 meters or closer. If you
create a well-made LOD B, you can reduce the distance of the LOD A switch to LOD B and
increase game performance.

To achieve this, try to reduce the model keeping the curved parts smooth, parts that create
evident reflections, such as glass or curved parts of the body. Try to see how it works in the
game and refine it. The switch between the LODs must be as smooth as possible without any
visible “jump”.

On the LR Cockpit you must keep the most visible parts relatively detailed to ensure that the
switch is smooth. In tin-top cars this includes the top of the dashboard and the frame around the
side windows and the rear window. In open-seaters the sensitive parts are usually the area
around the steering wheel and behind the driver.

NOTE: The LOD B and LOD C MUST have a separate LR Cockpit mesh that matches the
reduced topology of each LOD exterior mesh. The interior mesh must fit the exterior mesh and
the outlining vertices must be snapped. Do NOT use the same LR Cockpit mesh for LOD A,
LOD B and LOD C. Make sure there are no gaps between the interior and exterior mesh.

LOD A COCKPIT_HR 125,000 tris
Cockpit HR LOD example

LOD A COCKPIT_LR 7,000 tris
Cockpit LR LOD example

In LOD A, the cockpit (see the image above) has 2 LODs, one High Resolution (HR) for the
cockpit camera and showroom view, and another Low Resolution (LR) LOD for most exterior
cameras, replays, and distant views.

NOTE: The HR and LR
cockpit LODs must
always fit the exterior
LOD A, because while
driving, the EXTERIOR
MESH that is present is
the LOD A.

When the camera
moves farther away, the
cockpit LR will switch
and you get a simplified
version of the cockpit,
with only one material
(in most cases) and a look very similar to the HR version.

In some cases when the car has a customisable interior with multiple colour options, more than
1 material is allowed on the LR interior but as a general rule, try to keep it as low as possible.

SCRIPT TO MANAGE LODs

LODs are a set of simplified models that change in relation of the camera distance.
This process is necessary in order to optimize the framerate in the game.
The LOD switch can be controlled via script, named lods.ini, located in
AssettoCorsa/content/cars/CAR-NAME/data. The script contains the following values:

[COCKPIT_HR]

DISTANCE_SWITCH=6 ; Indicates the distance (in meters) when the
cockpit HR change to the cockpit LR (if present)

[LOD_0]

FILE=abarth500.kn5

IN=0

OUT=15 ; Indicates the distance (in meters) when lod_A changes with
lod_B (if present)

[LOD_1]

FILE=abarth500_B.kn5

IN=15

OUT=45 ;Indicates the distance (in meters) when lod_B changes with
lod_C (if present)

[LOD_2]

FILE=abarth500_C.kn5

IN=45

OUT=200 ; Indicates the distance (in meters) when lod_C changes with
lod_D (if present)

[LOD_3]

FILE=abarth500_D.kn5

IN=200

OUT=1500 ; Indicates the distance (in meters) when lod_D disappears
from visual.

NOTE: Verify that the distance of LOD “out” value matches the “in” value of the next LOD,
otherwise your car will disappear before the switch.

ADDITIONAL INFO: The LOD B must have the same null hierarchy as the LOD A except for
the nulls COCKPIT_HR, STEER_HR and the FLYCAMS, which should not be present. Based
on how visible the elements are, it is up to your judgement to remove other non-essential nulls,
such as wings, bumpers, the hood etc. in LOD C.

3. SCENE STRUCTURE

In order to work in-game, the car needs specific nulls to present in all LODs, making sure that all
car parts are functioning properly. An example scene is provided in the Dropbox folder with a
folder structure and hierarchy to follow (Scene templates/scene_nosuspanim_example_max).

Make sure you keep only one set of nulls in your scene and that you use a clear layer structure
to hide/unhide layers for exporting various LODs (see example scene).

Nulls that MUST be present in ALL LODs:

SUSP_LF suspension Left Front
SUSP_LR suspension Left Rear
SUSP_RF suspension Right Front
SUSP_RR suspension Right Rear
WHEEL_LF wheel Left Front
WHEEL_LR wheel Left Rear
WHEEL_RF wheel Right Front
WHEEL_RR wheel Right Rear
COCKPIT_LR cockpit Low resolution node
STEER_LR steer Low resolution node
DISC_LF Brake disc Left Front
DISC_LR Brake disc Left Rear
DISC_RF Brake disc Right Front
DISC_RR Brake disc Right Rear

There are secondary nulls that are needed to complete the car, but are not essential, so it
means that in some cases those object can be excluded from certain LODs:

COCKPIT_HR cockpit High resolution node (A only)
STEER_HR steer High resolution node (A only)
RIM_LF Rim Left Front (A and B)
RIM_LR Rim Left Rear (A and B)
RIM_RF Rim Right Front (A and B)
RIM_RR Rim Right Rear (A and B)
RIM_BLUR_LF Rim Blurred Left Front (A and B)
RIM_BLUR_LR Rim Blurred Left Rear (A and B)
RIM_BLUR_RF Rim Blurred Right Front (A and B)
RIM_BLUR_RR Rim Blurred Right Rear (A and B)

When it is required to manually animate the suspension, or the car has Dion axle suspension,
you have to include some extra nulls in your scene:

REAR_AXLE for the center of rotation of the Dion Trunk axle
HUB_LF Hub for the suspension Left Front
HUB_LR Hub for the suspension Left Rear
HUB_RF Hub for the suspension Right Front
HUB_RR Hub for the suspension Right Rear

Nulls/dummy used to define the broken glass mesh:

DAMAGE_GLASS_CENTER_1 (A and B)
DAMAGE_GLASS_FRONT_1 (A and B)
DAMAGE_GLASS_REAR_1 (A and B)
DAMAGE_GLASS_LEFT_1 (A and B)
DAMAGE_GLASS_RIGHT_1 (A and B)

The number at the end of name can increase if other nulls/dummy are present. The
implementation of damage glass is fully explained in the DAMAGE GLASS section.

About Nulls/dummy to animation parts, see the Additional nulls for animations section.

For the DAMAGE of car elements, the following nulls must be placed in the PIVOT point of the
object around which the object rotates upon impact. The naming conventions for damageable
parts are the following:

FRONT_BUMPER (A and B)
REAR_BUMPER (A and B)
MOTORHOOD (A and B)
REAR_HOOD (A and B)
FRONT_WING (A and B)
REAR_WING (A and B)
REAR_EXTRACTOR (A and B)

Additional dummies can be:

WIPER_# for wiper animation (A, B and C)
FRONT_LIGHT for headlight animation (A, B and C)
DISPLAY_DATA for digital displays (A only)
DOOR_L and DOOR_R for exterior door animation (A and B)
DOOR_L_1 and DOOR_R_1 for interior door animation (A only)

MESH PARTS OF A GENERIC CAR MODEL

The components of a car must be divided in many parts in order to manage animated objects, meshes
and other features present in game. Here is a list of mandatory and optional mesh objects.

Common exterior parts:

MAIN BODY Required - must be present in LOD A and LOD B
DOORS optional - only in LOD A if present on the model. In LOD B the doors are
not animated but welded to the main body
MOTORHOOD Depends on car type - if needed, must be present in LOD A and LOD B
FRONT BUMPER Depends on car type - if needed, must be present in LOD A and LOD B
REAR BUMPER Depends on car type - if needed, must be present in LOD A and B
WHEEL HUB Optional - contains the brake calipers must exist on LOD A and LOD B
WHEEL RIM Required - must be present in LOD A and LOD B. In LOD C the wheels
are simplified.
WHEEL RIM BLUR Required - a version of the rim but with a blurred texture, must be present
in LOD A and LOD B
WHEEL TYRE Required - must be present in LOD A and LOD B. In LOD C the wheels
are simplified
BRAKE DISK Depends on car type - if needed, must be present in LOD A and LOD B

FRONT LIGHT epends on car type - if needed, must be present in LOD A, LOD B and
LOD C
REAR LIGHT Depends on car type - if needed, must be present in LOD A, LOD B and
LOD C
WIPERS Depends on car type - if needed, must be present in LOD A, LOD B and
LOD C
FRONT WING Depends on car type - if needed, must be present in LOD A, LOD B and
LOD C
REAR WING Depends on car type - if needed, must be present in LOD A, LOD B and
LOD C

Cockpit mesh parts:

COCKPIT_HR Required - high resolution cockpit, the one that you see in cockpit
view. Low Resolution (LR) version also required, including LOD B and LOD C
STEER Required - steering wheel HR and LR interior, LOD B and LOD C
STEER PADDLE Depends on car type, required also in Low Resolution (LR)

and LOD B
SHIFT depends on car type - required also in Low Resolution (LR)

and LOD B

SEATBELTS Depends on car type - if needed, required also in Low Resolution
(LR) and LOD B and LOD C. In LOD A, both ON and OFF position required. In LR, LOD B and
C only the ON position model is needed! ON position needed only for the driver, not the
passengers.

MESH NAMING CONVENTIONS

Be consistent in naming mesh objects within your scene. Use a pre-tag such as MESH_ or
GEO_ for mesh objects to differentiate them from null objects. Make sure you keep the same
names for functional objects (lights and other emissives etc.) throughout the entire scene for all
LODs to ensure that the scripts works as intended for each LOD.

You can choose to name your objects based on location (when using multi-materials), such as
GEO_front_bumper and GEO_main_body (in this case there will be sub-objects divided by the
editor at exporting), or based on material grouping, such as GEO_paint_body and
GEO_chromes_body.

SETTING UP THE CAR MODEL INSIDE THE 3D SPACE

You can find example scenes in Scene templates folder in the sdk/dev folder! The car must be
oriented as shown in the image: The Z vector must be the front direction. The model must be
placed with the wheels touching the ground on the 0 coordinate (Y) (see image below).

The model bounding box must be centered in YXZ = 0.0.0. (See image below)
The car must have 4 different Level of Detail models that must share the same position and
orientation!

HIERARCHY and ORIENTATION

A template file is provided as an example, showcasing how to setup a correct hierarchy for a
car. The file contains a set of NULLS or DUMMY objects, that define the CENTER position of
any piece of the car. The names of these NULLS must
follow specific rules showcased below.
The EDITOR will recognize these essential NULLs in
order to define the rotation pivot of the wheels, the
suspensions and any animatable object in the car.

NOTE:
Any object that is not a child of a NULL/ DUMMY will be
managed like part of the CAR CHASSIS.
All the pieces of the geometry that belong to the car
must be placed in a HIERARCHY to define the specific
properties of each mesh object in the game.

Example image on the right: wheels objects are linked
to the wheel null/dummy.

In the same way you must place all the others pieces like children of the correct NULL that is
designed for the part that you are creating. So for the rim there is a dedicated NULL and so on
for all the other parts. Remember that every NULL is also the CENTER of rotation. If your mesh
is not properly placed under a NULL with a correct center of rotation, the mesh will rotate the
wrong way.

See the example on the left: the
geometry of the WHEEL is centered
exactly on the NULL.

This will allow the rotation to be correct.
In the car example file you'll be able to
explore how we placed all the NULLs
and the relating mesh objects. The
BRAKE DISK must have the center in
the same EXACT position of the wheel
and the rims.

4. FUNCTIONAL MESH ELEMENTS

ANALOG INSTRUMENTS

To animate a needle on the dashboard, the ARROW_
mesh needs to be placed under a proper null. Just as other
objects, ARROW_ nulls must follow specific conventions:
ARROW_SPEED
ARROW_RPM
ARROW_TURBO
ARROW_FUEL
ARROW_WATER_TEMP
ARROW_TIME
*ARROW_LIMITER

Each ARROW_ null must be linked to the COCKPIT_HR null!
Each instrument is controlled by specific values in the analog_instruments.ini script, located inside
“content/cars/car_name/data” folder.
The needle mesh must be created in neutral position and linked as child of a specific null.
The arrow then must be rotated to the 0 position as shown in the image above.

The Y axis determines the arrow position on the gauge and must be placed at 0 (ZERO) or the start of the
gauge at hand.

Note: Z axis must always point FORWARD

*The ARROW_LIMITER is a tell-tale found for example in the Lotus 49 and Lotus 72D cars, showing the
maximum RPM in a given stint. The rotation of the ARROW_LIMITER null must be the same as the
ARROW_RPM null, and it requires NO script, as it is controlled from within the core engine.

You can use the Data Scripts tab in the KS editor to set up the analogue scripts (see EDITOR section).

To ensure compatibility in the future, if present, set up gauges that are currently not supported by the
engine in a similar fashion, with name conventions that are consistent with the existing rules and the
function of the instrument:

ARROW_VOLTAGE
ARROW_OIL_TEMP
ARROW_OIL_PRES
ARROW_FUEL_PRES
ARROW_WATER_PRES

LEDs and DIGITAL DISPLAYS

It is possible to have various LEDs and indicator lights light up in the cockpit during driving. It is
recommended to make the cockpit dynamic with as many functional items as possible.

Each individual LED (such as for RPM, boost or KERS) or bar TAG must be a separate object and
numbered in a series:

LED_RPM_# where the “#” is the number of each specific item in a series
TAG_RPM_#
KERS_CHARGE_#
KERS_INPUT_#
TURBO_#

Some cars have multiple displays and it is possible that
certain items (such as RPM) are shown in more than one
screen. In this case, make sure that you differentiate
between the two readouts: LED_RPM_1_# and
LED_RPM_2_# etc.
For functional LEDs or warning lights, each item must be a
separate object, using the following naming conventions:

LED_LIGHT headlight indicator light
LED_FUEL fuel warning light
LED_KERS KERS status light
LED_IGNITION ignition status light
There are two ways to control specific items on the
dashboard. The first one is where the mesh is always
present and the script controls the emissive value on a per
object basis. This is the method used for RPM LED series,
headlight indicators and ignition status lights.

With the second method the mesh is disabled by default and the script controls how and when it should
appear with the shader and object properties set up in the editor. It should be noted that the meshes
appear in the editor and the showroom. This is used for dynamic RPM bar graphs, boost bar graphs, fuel
level bars, shift indicators, fuel warning lights and KERS bar graphs.

NOTE: If in the second case the item is a light with
emissive values, it must also use an individual material
with the desired emissive value set in the editor (e.g. fuel
warning light).

NOTE: It is very important that you do extensive research
about dashboard functionality and digital screens (if
present) and prepare the model for dynamic displays.

When creating the texture for the digital display, you must

take into consideration the dynamic readouts that are supported by the engine and must not include them
in the static diffuse texture.

NOTE: Do NOT use the convention _01, _02, _03 etc. for single digits for the suffix of tag
object names, always use _0, _1, _2 etc. E.g. LED_RPM_0, LED_RPM_1 etc.
The following items are currently supported by the game engine:

Time
Gear
Speed
RPM
Water temperature
Fuel level (bar graph)
Fuel level (litres)
KERS charge (bar graph)
KERS input (bar graph)
Turbo boost (bar graph)
Turbo boost (pressure)
Lap time
Previous lap time
Difference from previous lap
TC setting
ABS setting
Headlight indicator
Fuel warning light
Current lap
Total laps
Ambient temperature
Km with current fuel left
KERS charge readout
Estimated fuel
Any RPM-dependent status indicator
Tyre pressure
G-meter
Placeholder script for any static text or numbers

IMPORTANT: If there is a digital display, create a NULL called DISPLAY_DATA with the orientation
shown in the image below. If there are more displays, use a serial number (DISPLAY_DATA_1 etc.) to
specify each individual screen. The DISPLAY_DATA null is the reference for the items in the
digital_instruments.ini, it serves as a reference point and makes sure the text appears on the same
surface as the display. For this reason if the display is rotated/tilted, the null must follow the same
orientation. To avoid clipping, place the null so that its pivot point is in front of the mesh by a few
millimetres and not directly on it.

NOTE that the above list is not complete. Please visit the following link to see a community and
dev-assisted thread on the official support forum for a complete list of digital scripts and their
implementation:
http://www.assettocorsa.net/forum/index.php?threads/analog-digital-instruments-lights-q-a-request-official
-support-here-check-first-post.12249/

http://www.assettocorsa.net/forum/index.php?threads/analog-digital-instruments-lights-q-a-request-official-support-here-check-first-post.12249/
http://www.assettocorsa.net/forum/index.php?threads/analog-digital-instruments-lights-q-a-request-official-support-here-check-first-post.12249/

DISPLAY_DATA null orientation and example for KERS bar graph:

NOTE: When the display is located on the steering wheel, the DISPLAY_DATA null and all the TAG/RPM
mesh objects must be a child of the STEER_HR null to make sure they rotate along with the steering
wheel.

DIGITAL PANELS

Digital panels can be used for two functions: Push-to-Pass status and on-track Position.
This feature requires a digital_panels.ini in the car’s data folder and pre-drawn numbers in the
your_car/texture/display_panel folder. As an example, take a look at the
content/cars/ks_audi_tt_cup/texture folder in your game install folder.

You will also need a parent NULL (e.g. DISPLAY_PANEL), with the same orientation rules that exist for
the digital instruments (see above).

Position

Use the following script to activate the function:

[FULLPOSITION_SERIES_0]
PREFIX=textName_ prefix of texture names located in car_folder/texture/display_panel
POSITION=
PARENT=DUMMY parent dummy name
START=0 postfix start
END=9 postfix end
DIGIT=1 set 1 for second digit, 10 for first digit
WIDTH=30
HEIGHT=40
COLOR=255,255,255,255
INTENSITY=2

Push-to-Pass

Use the following script to activate the function:

[PUSH2PASS_SERIES_0]
PARENT=PANEL_P2P name of parent dummy
POSITION=0.0615,-0.068,0
WIDTH=0.124
HEIGHT=0.137
TRIGGER=0
PREFIX=num_ prefix of texture names
COLOR=255,255,255,255
INTENSITY=40.0
START=0 name postfix to start from
END=9 name postfix to end at
DIGIT=1 (=1 for second digit, =10 for first digit)
BLINK_HZ=5 blink rate when activated (=0 for no flashing)

P2P status led

[PUSH2PASS_LED_0]
OBJECT_NAME=LED_P2P
EMISSIVE=0,0,800
DIFFUSE=0.35
INVERTED=0 for inverse function
BLINK_HZ=0 if higher than 0, it blinks

Known limitation: in replays, the P2P and displayed position status is not communicated, which is why
the panels will show incorrect or placeholder values.

SEATBELTS

The cockpit contains two different mesh objects for the belts: One for the belt ON and another for the belt
OFF. These two meshes must be linked as a child of the null COCKPIT_HR and must be named as
follows:
CINTURE_ON for the belt on the driver when is driving
CINTURE_OFF for the belt on the seat, without driver (showroom view)

NOTE: The names are in ITALIAN (CINTURE = SEATBELT)….
To create the proper mesh of the belt on a driver, place the driver first, then animate it and verify how the
arms move in order to avoid compenetration with the belt mesh.

The seatbelt mesh must be modelled also in the cockpit LR but only the CINTURE_ON mesh.
When you see the cockpit LR it means that you are in game, not in the showroom, so a driver is
in the car and you have to show the CINTURE_ON configuration only, without the belt being
separated from the rest of the cockpit mesh.

LIGHT MESH AND SCRIPTS

Each car must have individual objects. The light mesh objects must be separated and detached from the

body of the car and use specific naming
conventions. The mesh name must be
controlled from the lights.ini script. The
same scripts include the instructions for
the ON/OFF conditions, as well as the
light emission colour.

Example image on the right: The mesh of
the light is made from different parts,
which are divided according to their
function.
Some examples:
Position lights, brake, rear, standard front
lights, high beams etc.

Note: There is no need to split the lights
up as “right” and “left”. They can be one

mesh because they turn on together.

IMPORTANT: similarly to the dashboard, please do an extensive research about light functionality, and
strive to implement as many functions as possible. Each light source must be detached as a separate
object, avoid keeping all the difference reflectors and bulbs in one object. This way, each element can be
controlled individually to achieve realistic results. A good example is shown in the image below:

Open the lights.ini script located in the “data” folder
The script contains the following values:

[HEADER]
VERSION=3 Script version. Keep this value like is.

[BRAKE_0]
NAME=REAR_LIGHT name of the mesh to light up
COLOR=500,60,40 RGB value when you press the brake pedal
OFF_COLOR=50,12,8 RGB value for position light when brakes are off

[LIGHT_0]
NAME=FRONT_LIGHT name of the mesh to light up
COLOR=240,195,180 RGB emissive value when the front light is on
OFF_COLOR=50,50,70 RGB emissie value for day-light (optional)

In the above example: The NAME= value affects a mesh called REAR_LIGHT (as seen in the image
above). The COLOR= value assigns a colour when the brakes are on (you are pressing brake pedal).
The line below OFF_COLOR= is the emissive value of the brake light (in some cars, the same mesh is lit
up when you turn the lights on and when you brake).
Different functions and colours can be assigned to different meshes.
As an example, the value COLOR=3,0,0 assigns a specific colour to the light. The mesh is lit using HDR
and there is no maximum limit of intensity.
The values for the COLOR= parameter are in RGB 0 to 1 range, so a value of 1 means the maximum
value of the RGB scale (256). The values can go over 1 if more intensity is needed. As an example, a
value of 240 is given to the [LIGHT_0] section, in order to produce a strong glow.

NOTE: for a glowing brake light we recommend an R (red) value between 150 and 850. For day running
lights, we recommend values between 40 and 100, while for high beams, we recommend values ranging
from 250 to 800.

NOTE: the dashboard headlight indicator lights and the dashboard lighting are also controlled by the
lights.ini. The dashboard objects and any other objects that light up in the interior must be detached and
named according to the following convention:

LIGHT_GAUGE_#
LIGHT_INTERIOR_#

Don’t forget to detach the objects and link them to their respective dummies if they are located on moving
objects (e.g. the steering wheel)

Modern Formula cars can use the following script for ERS status flash light at the rear:

[HEADER]
VERSION=3
FLASHING_BLINK_TIME=0.35 Blink length in seconds
FLASHING_REPEAT=1 Number of flashes on activation
KERS_BLINKING=1 Line means KERS blinking is enabled
NO_LIGHT_SWITCH=1 Line means it will not work as headlight

[LIGHT_0]
NAME=g_Rain_Lights
COLOR=180,0,0
PITLINE=1 1 means it flashes in pitlane
KERS=1 1 means it flashes when KERS harvest is active
SPECIAL=1 1 means light toggle is disabled

Use the following script to use flash function for headlights and flashing pitlane lights:

[HEADER]
VERSION=3
FLASHING_BLINK_TIME=0.15
FLASHING_REPEAT=8

[LIGHT_0]
NAME=LIGHT_FRONT
COLOR=530,420,50
FLASH=1 1 means will flash when flash toggle is pressed

[LIGHT_1]
NAME=LIGHT_RAIN
COLOR=95,0,0
PITLINE=1 1 means it will flash in pitlane
SPECIAL=1 1 means light toggle is disabled

SKINNED MESH

FBX skinned mesh
objects are
supported by the
game engine.
Skinned mesh
objects can have
as many bones as
necessary but no
more than 4 bones
influencing a single
vertex.

A good example of
skinned mesh is
the driver
(explained later) or the gearshift lever with a fabric skirt at the base of the lever.

The example image up here show kind of usage that you can do.

Rules for creating a skinned mesh:

1) All vertices must be influenced by at least one bone. If a vertex is not influenced by a bone, its world
coordinates will be 0,0,0, resulting in a long polygon that spawns from the center of the 3D world until
your space position.
A non-skinned object can be linked with a skinned mesh. Connect the non skinned object as a child of the
skinned mesh. In the above image, the skin has 2 bones but the handle is a parent of the non-skinned
yellow null.

2) Every material with a skin rig must be unique. A material cannot be used on a standard mesh and at
the same time on a skinned mesh. Two different materials must be created, one for the standard mesh
and another one for the skinned mesh.

3) The skinned-mesh dedicated material, must be KsSkinnedMesh or the KsSkinnedMesh_NMDetail.
The animation works only when the skinned material is assigned to the skinned mesh.

4) The skinned mesh must have the pivot in the 0.0.0 coordinates of the world. It can be child of another
dummy, but this dummy must also have the coordinates of 0.0.0.
We usually put the skinned mesh of the gearshift or something else in the cockpit as the child of the
cockpit dummy/null. And the cockpit Dummy/null is usually in the 0.0.0 coordinates. Or you can simply
leave the mesh free without linking it to any node.

NOTE: Do not use this material on a standard mesh without bones. Avoid using skinned mesh on
suspension parts! For springs and rubber parts use scale animation.

DRIVER POSITION AND MESH

A copy of AC driver with the bones skinned,
basic animation of the steer rotation, helmet
and some textures, is provided as an
example template. It can be placed inside
any custom car.

For a proper placement follow these steps:

If you want to use a custom driver mesh go
to the section CUSTOM DRIVER, otherwise
follow these steps:

1) Import the template file
DRIVER_BASE.fbx in your 3D application.
You should see the driver as in picture.
Inside the template, a basic steering wheel
rotation animation is provided as an
example.
The animation consists of 200 frames.
The neutral position is on frame 100. From neutral (100) to 0, the steering wheel rotates to the left. From
neutral (100) to 200, it rotates to the right.

2) place your driver on the seat, with his hands on the steering wheel. Probably some modifications of our
animation template will be necessary.

The image here
shows an example
placement:

The driver mesh and
position can now be
exported and it will
contain the correct
hierarchy, and the
correct names for the
bones and various
objects.

IMPORTANT:
Remember to set the unit in EXPORT (for the provided pilot) to Meters. If not, the editor will produce a
weird position of the bones and a wrong result. Keep the same GENERIC UNITs in your 3D software.
This is needed because of the original scale of our pilot is 1 and must remain 1 even when exported. For
a bone created with a scale of 1 inside 3dsMAX or MAYA, this problem should be not present.

How to export the driver base position from the editor:

1) Open in the editor the FBX file with the driver placed in the correct
base position.

2) Save Driver Base Pos

A file named driver_base_pos.knh is created and stored in the same
folder where the source FBX is located.
This file must be placed in the following path:
AssettoCorsa/content/cars/CAR-NAME/ where car-name is the car’s
folder.
The game engine will load the driver and place it using the correct
position information stored in the driver_base_pos.knh file.

DRIVER ANIMATIONS

The provided template file DRIVER_BASE.fbx contains a basic example of a 360° steer rotation loop
animation.
This animation will probably not match the steering wheel of your car’s design. The animation must be
modified to match your custom steering wheel dimensions and placement.
Note: The animation must be 200 frames where frame 0, frame 100 and frame 200 match to allow a
LOOP animation. For 3DS Max users we have prepared an animation rig that can be downloaded from
the Driver animation folder in the Dropbox link.
After editing the animation, save the keyframes of the arms NULLs only and export the FBX with ONLY
the animated parts. Animating the pedals is not supported yet. The image below shows the hierarchy:

The bones of the arms are highlighted in the blue and red area in the image, and every bone is parent of
the RIG_Clave_L and RIG_Clave_R bones.

To animate the hand that does the shifting, animate the arm bones from RIG_Clave_L/R up to the fingers.
To animate the paddle gear change, animate the fingers only.
For every animation you must export a copy of the driver.fbx with ONLY the animated parts needed for
the desired clip. Example: Export driver.fbx with the steering wheel animation only, then another one with
gear animation only etc.
Store the driver animations with the names indicated below in the animation folder of your car project
folder with all the fbx files and textures.

Steer.fbx for the 360° steer rotation
Shift.fbx for the gearshift animation

Shift_up.fbx for the paddle shift up
Shift_dw.fbx for the paddle shift down
See the section EXPORT ANIMATIONS FROM THE EDITOR for instructions on how to create a clip.
Note: Always verify that the car shift animation and the driver shift animation have the same number of
frames so that the animation is perfectly synchronized in the game.

Warning: There is typo in the name of the “neck” bone, which is spelt as “nek” by error. Albeit
being incorrect, the game still works with this wrong name, so please do NOT correct the typo and
keep it “nek”.

Example: When
the driver changes
gear, his arm starts
the animation with
the hand slightly
distant from the
steering wheel.
(see image below)

On frame 0 the
hand is slightly
away from the
steering wheel. On
frame 10 the hand
is on the gear
lever. On frame 20
the hand moves
the gear lever. Be sure that the gear lever animation is synchronized with the hand.
For example, if the hand needs 10 frames to reach the gear level, the gear lever must have 10 frames in
the static position before it starts to move.

NOTE: See the following forum thread for a driver rig and explanation to be used in 3DS Max (many
thanks for the_meco):
http://www.assettocorsa.net/forum/index.php?threads/custom-steering-animation-rig-1-7.18201/

http://www.assettocorsa.net/forum/index.php?threads/custom-steering-animation-rig-1-7.18201/

DRIVER SCRIPTS

The driver is managed by driver3d.ini script in “AssettoCorsa/content/cars/CAR-NAME/data”.
The file structure is the following:

[MODEL]
NAME=driver
POSITION=0,0,0
- This section determines the model of the driver that will be used (there are different models available)

[STEER_ANIMATION]
NAME=steer.ksanim
LOCK=360
- This section determines the clip to use for the steering wheel animation and its rotation limit (in this case
360 degrees)

[SHIFT_ANIMATION]
BLEND_TIME=200 ; (MS) Time used to move the driver’s hand

from the steer position to the first frame of the
animation.

POSITIVE_TIME=400 ; (MS) Time needed to move the driver’s hand from the
first frame of the animation to the gear lever (forward
animation).

STATIC_TIME=10 ; (MS) Interval of time were the driver hand is still
 on the gear lever (Wait Time between forward and
reverse animation)

NEGATIVE_TIME=400 ; (MS) Time needed to move the driver’s hand from the
gear lever back to the first frame of the animation
(reverse animation).

PRELOAD_RPM=6000 ; (MS) when the engine reaches this RPM value the
 forward animation is automatically played

INVERT_SHIFTING_HANDS=0 ; Set to 1 if the driver shifts with the left hand.
[HIDE_OBJECT_0]
NAME=DRIVER:HELMET ; Hide the specific mesh (copy the correct name
 from the editor) when in cockpit camera. In this case,

the helmet is hidden.
[HIDE_OBJECT_1]
NAME=DRIVER:GEO_Driver_FACE ; Here the driver’s head mesh is hidden.

Note: The driver face mesh can have different name if you use a custom driver mesh.

COLLIDER

Collisions between vehicles are one of the
most resource-demanding activities of any
game, especially if 20 cars collide in a turn at
the same time. To optimize such scenarios, a
simple collider shape is used to calculate
collisions between car bodies and track
objects.
The collider shape must be a simple solid
object with as low polygon count as possible,
without any UV or texture.
The collider’s pivot must be in the 0,0,0
coordinates and have the same orientation as
the wheel dummies.
Rules for collider objects:
1) The collider should have no more than 40/60 triangles.
2) A material called “GL” must be assigned to the collider inside the editor. This is a special material
specifically made for a mesh that is not rendered. Meshes with this material are used only for collisions.

3) The collider must not
extend below the floor of
the car.
4) The collider must have
no holes. The mesh must
be completely closed.
Once the collision mesh is
done, simply export the kn5
from the editor, using name
“collider.kn5”.

Make sure you save with NO textures! The file must be placed in the same folder as the car LODs with
the name collider.kn5.

5. FUNCTIONAL TEXTURES

CAR SHADOWS

The car ground shadows are not generated in real time, such as the sun shadows, but they are very
important in order to improve the visual effect of the ground position of the car and emulate an ambient
occlusion effect on the ground.

For each car there are five
shadow textures. Four
textures dedicated to each
wheel and another one for
the car body.

If not present, the car body texture is automatically generated once in game, otherwise an existing one is
used. A pre-made texture is used for the wheels shadows. All shadows must be placed in the root custom
car folder (see “Asset Organization”)

Examples:
This is the BODY shadow of the FIAT 500 car. In game it looks as in the image
above: The shadow is blended with the dynamic shadow.

Remember to place in the folder also the 4 wheel textures (see example on the left
image). Those work in the same way as the body shadow, but they are attached to
the wheels. You can take the automatically generated car body shadow and further
refine it in photoshop or your favourite application.

NOTE: The auto-generated shadow of the car is very ROUGH. They must be edited in order to
obtain a smoother result.

CAR MIRRORS

In order to make car mirrors work, a material must be created (the name is not important), and assigned
to the mirror mesh objects. The mesh must be mapped with the texture called MIRROR_PLACEMENT.

This texture is
mirrored and the
UV must be
mirrored as well
to make sure it
appears
correctly.
The texture is
divided in three areas. CENTRAL must fit the central internal mirror of the car. The red shows the left,
while the blue shows the right hand side mirror.

The 2 points at the center of the lines indicate a point that must be placed in the center of the mirror to
make sure that the cars behind can be clearly seen.

Note: remember to keep the correct aspect ratio of mirror UV, otherwise the image of the reflection will be
distorted. The image ratio of the MIRROR PLACEMENT template is 4:1.

Example of the MIRROR_PLACEMENT file, applied to the various mirror mesh objects:

NOTE: Only use the MIRROR_PLACEMENT texture for UV mapping, the actual texture in the editor
should be a flat texture named mirror.dds.

INTERNAL WINDSCREEN AND DOOR GLASS REFLECTION

A specific shader is used for the internal of the cars, made
specifically to emulate the sun reflection effect when the surface is
not completely clear. This effect can be increased or reduced by
editing the glass texture provided.

The shader to apply at the internal glass is KsWindscreen

NOTE: the internal GLASS must be not part of the cockpit HR.
Internal GLASS objects on the doors must be linked to the
appropriate EXTERIOR door nulls. When the cockpit LR switches,
the internal glass must remain visible on the LOD A.

Shader
parameters
are shown in
the image on
the right.
An example of
the shader effect is shown here to the left.

The texture for the INTERNAL GLASS must be

saved in DDS and it must have an alpha channel and the following layout.

The left image
shows the diffuse
of the glass
texture.
The right image
shows the alpha
channel.
A soft shadow of
the cockpit
dashboard is
painted on top of
the texture.

This trick allows an emulation of the internal reflection of the dashboard on the glass when the sun
is in front of the car.
Note: The internal glass mesh is just a copy ot the external polygons of the glass, but it should have the
normals pointing to the interior. Do likewise for all the internal windows.

DAMAGE GLASS

The car can have 2 kinds of damage: damage to glass
objects and the body.
For the glass we have to do the following:
Duplicate the glass object, assign to it a new material and
map it using the texture
you can find in the Texture common folder called
Glass_Crack_00.psd.

Then, move it away (0.5mm or less) from the original
glass to avoid clipping. See here:1
Try to map the glass approximately as shown here (at

least for the front windscreen), because the broken glass must allow the driver to see the road in the
game. The cracks must be more visible in the corners and less so in the center (see image above).

You can map other glass objects on a different area in
UV, such as the bottom part. Use the radial or
fragmented cracks depending on the shape of the
object.

Radial is good for rounded headlight glass, while the
fragmented pattern is usually used for square-shaped
headlights or side windows. You can see an example
for the side glass: Note that we taken also the mirror
glass, because it part of the glass objects that can be
broken during side impacts.

Once you have extracted your glass damage mesh you must place them under the appropriate nulls that
use the following naming conventions. NOTE: the numbers must always be present.
DAMAGE_GLASS_CENTER_1 central glass, usually windscreen
DAMAGE_GLASS_FRONT_1 front headlight glass or similar
DAMAGE_GLASS_REAR_1 rear/brake light glass or similar
DAMAGE_GLASS_LEFT_1 left side windows of the door and near
DAMAGE_GLASS_RIGHT_1 right side windows of the door and near

Above you can see an example for how to separate damage glass parts.

For the windows you usually have to create more than one object. The same can happen when there are
glass objects on the main body as well as on the front bumper. In this case, you can create a new
dummy/null and call it DAMAGE_GLASS_FRONT_2. Place this dummy/null as the child of the
FRONT_BUMPER null to force the broken front bumper light glass to move along with the
FRONT_BUMPER object. Do the same for other glass objects located on various moving parts.
You can create as many damage_glass nulls as objects as you need. (for better optimization, use as few
as possible….)

Once you have created, UV mapped and linked the objects,
you must assign the proper material with the parameter
indicated in the image on the left.
Every object of damage glass must be set TRANSPARENT
under the object settings and must not cast shadows.
As the diffuse and normal map we must apply a PROXY
TEXTURE. The Proxy texture is a placeholder texture that
substitutes the texture that the game loads automatically from
a common folder.

For txDIFFUSE use the DDS named
DAMAGE_GLASS_color.dds in the
Common Texture folder

For txNORMAL use the DDS named
DAMAGE_GLASS.dds in the Common
Texture folder

After you have set up the material, you must change the draw priority. Select every
DAMAGE_GLASS dummy/null (not the object!) and set the priority to -2 and press REORDER.

You can check if the
damage glass works
correctly by
pressing the
appropriate
button in the
editor. The
shortcut to see DAMAGE
GLASS in the editor is
F4.

In the editor you should see the DAMAGE glass as in the image below:

For naming the mesh objects, use a naming convention that is easy to follow, such as
MESH_DAMAGE_GLASS_FRONT_1 etc.

CAR DAMAGE

Certain body parts must be detached and placed under a Dummy/null that
acts like a pivot/center of rotation for the element when it receives
damage. Upon impact, a script is activated that makes the parts
vibrate/rotate on the basis of the location and pivot of these nulls.

Keep the nulls and also these parts separate in LOD B. In LOD C, the
elements can be attached to the main body and they do not have to be
movable. If the damaged parts are significant in size (massive front and
rear wings on formula cars, you can keep the most important items on the
LOD C to make sure there is no visible LOD switch when the car is
damaged.

Use the following guidelines:

1) Make sure that you have closed the mesh in the interior. You put
a black texture or something very dark to ensure that there is no gaping
hole behind the moving objects.

2) Place the dummy/null in the rotation point that is logical for the
part. For the MOTORHOOD it can be the hinges, for a FRONT_BUMPER
it can be a point that allows rotation but avoiding any intersection with the
main body mesh.

3) Detach parts only that don’t leave holes in the car when moving,
or carefully cap the holes.

Parts that take damage may be:
Front Bumper, Rear Bumper, Front and Rear Hood, Exhaust, Wing and
the Extractor (diffuser) on various GT cars etc. It depends on the model at
hand.

After the parts are done, you must set up the material properly and edit a script.

Damage needs 4 different textures to work properly:
The damage feature to work properly you need the following textures: DAMAGE_NORMAL map,
DAMAGE_SCRATCHES map, a DUST map and a DAMAGE_MASK map.

The DAMAGE MASK must be called DAMAGE_Mask.dds and must be created in the following way:

The WHITE part indicates the front of the car (painted in the alpha channel), the RED the left-hand side,
the BLUE the right-hand side, and the GREEN the rear of the car. We use this mask to control which
areas are affected by the damage.
The mask must be painted as shown here:

Remember to blend the colors, do NOT create sharp transitions. Never paint the roof and the top of the
bonnet.

Assign this texture to the slot txDamageMask
Resolution must be 512x512 pixels and the texture can be exported as DXT5.

For the NORMAL MAP texture
we must create a normal map
with the metal deformation as
shown in the example.

You can use your preferred
tool, such as Mudbox, Zbrush,
or anything else you’re familiar
with.

Look at the example:
in the alpha channel
you must paint the
part of the chassis
with scratches, which
becomes less
reflective, to visualize
better the wrecked
appearance.

This texture must be
assigned to the slot
called txNormal.

Texture must be done
in DXT5 and size can
be 512X512 pixels.

For the DAMAGE
SCRATCHES texture you
must paint a texture that,
working along with the
normal map, shows
scratches and damage on
the surface. Have a look
at example image. The
scratches appear in front
of a red background here
but in the texture use a
grey background shown in
the texture example
below.

The scratches on the edges must have a highlight and they must be visible on the sides, too.
Scratches appear over the car paint texture so the texture needs an alpha channel to use as a mask for

opacity.

This texture must be
assigned to the slot called
txDamage.

The texture must be
exported as DXT5 and the
size must be 2048x2048
pixels.

The last texture is the DUST texture that shows dirt on the car after driving off-road.

We must draw a dust
layer to visualize dry dust.

Texture must be done in
DXT5 and size must be
2048x2048 pixels or
1024x1024 if the car is
heavy on textures.

This texture must be
placed in the slot called
txDust.

To visualize the global effect of the damage you can use the show damage button in editor:

6. TEXTURING GUIDELINES

The supported texture format is: directX DDS
This format can be outputted from Photoshop (for example) using the specific nVidia plugin, available
here: https://developer.nvidia.com/legacy-texture-tools

As a general rule, we recommend using the DXT5 format with high-resolution textures (with or without
Alpha) and 8.8.8.8 format for textures with sensitive gradient information (RGB maps, detailed normal
maps) or small-size detail textures and 8.8.8.8 where Alpha information is included.
We need for every texture a PSD source with layers inside. The layers must be placed inside layer folders
with consistent and user-friendly names.

Inside every folder we need a base layer that allows us to
change important features of the texture. Follow these rules:

a) If the texture has an ALPHA CHANNEL, do not
collapse transparent features, keep the transparent
features in a specific layer.

b) If there is a normal map, provide in the layer also the
greyscale texture so that it can be re-generated with the nVidia tool

c) ALWAYS work with DOUBLE resolution (no more no less) of the target image and shrink it to
the right size only when you export the DDS. Test your results to be sure that the reduction does
not spoil the image too much (this could happen with tiny texts or symbols).

d) All PSD files must be in RGB Color 8 bit for channel mode.
e) Name them correctly following our naming conventions.

TEXTURE NAMING CONVENTIONS FOR PSD SOURCE FILES

Skin.PSD contains the main body textures
Ambient occlusion
Wireframe (UV)
RGB Map (material specular-gloss-ref map)
Material IDs and zones
Alpha channel

Ext_Details.PSD contains rivets, bolts, logos, and decals on the exterior
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Rims.PSD contains rim base and rim blur texture plus the blurred spokes
Diffuse
Normal map
Ambient occlusion

https://developer.nvidia.com/legacy-texture-tools

RGB Map (material specular-gloss-ref map)
Alpha channel

Calipers.psd contains the brake caliper texture
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Lights.psd contains the light texture
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Mechanics.psd contains the underside, engine and all the parts that are not included in the skin
Wireframe (UV)
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Glass.psd contains the glass texture and all similar parts such as black frame
Diffuse
Normal map
Alpha channel

Grids.psd contains tileable grids and similar textures (use more if needed)
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Tyre.psd contains tyre textures with blur and dirt
Wireframe (UV)
Diffuse
Normal map
Ambient occlusion
Alpha channel

Disc.psd contains the brake disc texture and the glow texture
Wireframe (UV)
Diffuse
RGB Normal map

Glow map

Windscreen.psd contains the fake internal glass reflection
Diffuse
Alpha channel

INT_Decals.psd contains dials, dashboard symbols, cockpit details and logos, plates and

interior bolts and stickers
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

INT_Details.psd contains coloured gradients and other details to use for smaller objects
Diffuse
Normal map
Ambient occlusion
Alpha channel
INT_Occlusion.psd contains the cockpit ambient occlusion texture
Wire frame stamp
Diffuse
Normal map
Ambient occlusion
RGB Map (material specular-gloss-ref map)
Alpha channel

Belts.PSD contains cockpit belts
Diffuse
Normal map

Seams.psd contains stitching, seams, and similar textures in tileable form
Diffuse
Normal map

INT_cockpit_LR.psd contains cockpit LOW RESOLUTION texture
Ambient occlusion
Wire frame stamp
RGB Map (material specular-gloss-ref map)
Material ID and zones
Alpha channel

All the extra textures that can occur and are not mentioned here can have a name that explains in brief
what they contain. To see how to manage textures you can see examples in the example folder in the
SDK.

EXPORTING TEXTURES AND OPTIMISATION

The carname_lod_A.kn5 file of an official car must stay below 44MB, including all textures and mesh. The
textures have to be very well optimized. When the PC runs out of memory, the game engine starts to
reduce texture size automatically, however, this is done in a way that does not ensure high quality, so we
have to avoid it in all cases and stay below the 44MB limit for the LOD A.kn5 file.

NOTE: As a general guideline, you can use the DXT5 compression for high-resolution textures. Use AL
(8.8, alpha luminance) mode for grayscale textures with sensitive gradients. Use RGB (8.8.8) mode for
map textures and ARGB (8.8.8.8) for NM textures with fine details. Remember to keep a complete set of
ALL of your textures without compression as a backup so that if they have to be outputted again, there
is no quality loss due to the added compression.

NEVER use the DXT1 compression mode. Keep the PSD files organized and updated so that they can
be used to re-output textures if a change is necessary after the delivery of the model. Do not work on
compressed DDS textures, always make your changes in the PSD and keep it updated along with the
exported textures so that the latest version of each PSD file corresponds to the latest DDS output.

Below you can see some examples for texture size. Taking into consideration priorities to maintain a
high-quality look, you can use larger textures provided that you optimize other textures better and you do
not go over the limit:

Skin_00.dds (the main body) must be 2048x2048 when it have sponsor and livery on.
If is flat, can be 1024x1024 and saved as 8.8. Skin_00_map.dss 512x512 ARGB

Rim.dds 512x512 It can contain a base material for rim blur non-transparent parts. Rim_map.dds
is half of the rim size and saved as ARGB. Rim_Spokes.dds 256x256

INT_Occlusion.dds 512x512 and INT_Occlusion_map .dds 512x512 saved as 8.8.

INT_Cockpit_LR.dds 512x512 or 1024x1024 depending from the car roof if open or close. DXT5 is
enough.

INT_Decals.dds 1024x512 DXT5 - INT_Decals_NM.dds 1024x512 in DXT5 or ARGB.

Lights.dds 512x512 ARGB - Lights_NM.dds 512x512 ARGB - Lights_Map.dds 256x256 ARGB

Grids tileable and various similar 256x256 or also half, depending on the image detail, export as
ARGB.

Tyre_D.dds and Tyre_NM.dds 1024x1024 DXT5
Tyre_blur_D.dds and Tyre_blur_NM.dds can be 512x512 or 256x256, save NM as ARGB.

Disc_D.dds and Disc_NM.dds can be 512x512 DXT5 (D) ARGB (NM) when very visible and half when it
is small and not very visible or when there are no details. Disc_Blur_NM.dds and Disc_Blur_NM.dds
are half of the non-blurred disc textures. Disc_warm.dds is always 128x128.

INT_Materials_D.dds and INT_Materials_NM.dds 512x512 or less, depending from image content.
INT_Materials_map .dds is half of base texture, save all as ARGB (especially NM and RGB map) to
keep the quality of the gradients.

Damage.dds 2048x2048 - Damage_NM.dds is 512x512 - Damage_Mask.dds is 256x256 - Dust.dds
is 1024x1024 DXT5.

Stiching_D.dds and Stiching_NM.dds can be 256x128 vertically tileable, save as ARGB.

Belt_D.dds and Belt_NM.dds can be 128x256 ARGB and must be vertically tileable.

Mechanics_D.dds and Mechanics_NM.dds can be 1024x1024 if contain a visible engine. If not, it can
be half. Mechanics_map.dds is always half of the diffuse one. Diffuse DXT5, NM ARGB, map RGB.

Calipers.dds and Calipers_NM.dds can be 256x256 or in some cases can be part of the Mechanics
textures if your car is a ‘60s open seater racing car. Calipers_map.dds is always half the size of the
diffuse. DXT5 for diffuse, ARGB for NM and RGB for map texture.

OPTIMAL USE OF TEXTURE SPACE
When you use your space in the texture you must make sure to optimize everything the best you can.
Maximum means that all available space must be used. You have to plan before you start to make sure
that you use your texture space in the most efficient way.

An example for the Decals_D texture with good use of space:

Include the alpha channel both in the diffuse and the NORMAL MAP to make sure it suits every
shader type.

In the following texture you can see the normal map texture with the alpha channel visible. The
uncompressed alpha channel defines the outline of the details.

Look at the following examples for the occlusion or the car skin textures to see how to optimize the
available texture space:

The parts use the maximum
space available and and the
padding (extension borders) fill
up the remaining space.

This arrangement allows us to
reduce the texture to as low as
512x512 (uncompressed) but
keep the occlusion gradients at
an acceptable level of quality.

It is recommended that all
interior objects with an AO map
be mapped on a single texture.

The same material groups must
use the same scaling to make
sure the detail textures appear
correctly.

NOTE: You also have to make sure that in the UV map the different UV parts are using the same scale to
make sure that any detail texture (metal flakes or carbon) appear correctly without any stretching and
distortion!

It is recommended that you use a checkered detail texture for mapping the body and interior
textures that use detail textures.

Also, and especially on the exterior, textures must be well organized. Look the second example:

BAKING THE AMBIENT OCCLUSION
To have a more realistic illumination effect, we need to bake the ambient occlusion map for the exterior of
the car, the rims, the lights and the interior of the cockpit.

Take the exterior, and remove all the DECALS objects. If you have a movable wing move it a bit far
from the body. Bake the Ambient Occlusion at double resolution (4096x4096).

For the cockpit: remove all the DECALS for logos and the stitching. For baking the interior place the doors
like in the image. For baking the steering wheel, remove everything else and bake it facing UP.
NOTE: look the pink pieces, they don’t take occlusion, but they influence the cockpit for them. They will
be placed under a different material.

Keep the doors far enough to avoid a dark occlusion on the
borders and the doorsill.
A baked texture is never how we want it in the end. We
suggest to edit it in Photoshop and create softer intersections
with objects. Random pixels can create a bad effect when
they are in a visible place.

Use Photoshop to make the transitions smoother where
necessary. The AO textures are globally a kind of soft
gradients. Avoid sharp, pixelated and unclean transitions.

IMPORTANT: when baking make sure you use a
wide-enough padding to avoid bleeding black artifacts around
the edges with low-resolution textures.

NOTE: With high-quality occlusion maps, such as those
baked using V-Ray, will require less retouch in PS later on so it is worth spending more time on how to
bake the textures at the best possible quality.

7. ANIMATIONS

SUSPENSION ANIMATION
The 3D suspensions of a car can be animated if needed.
In order to enable suspension animations, you have to edit the the script “car.ini” with the following
values:
“USE_ANIMATED_SUSPENSIONS=1” to enable use of the animations
“USE_ANIMATED_SUSPENSIONS=0” to leave the animations as by default (disabled)
Usually this means the animations are disabled, but on some occasions they are always on like the
steering wheel which is automatically animated.

NOTE: Animating suspensions do have some disadvantages. Animating suspensions follow
predetermined arcs and movements, so the wheels do not represent visually the setup values chosen by
the player in game. i.e. Camber angles might differ visibly from the values selected in setup screen.

We use a NULL hierarchy to animate the suspension geometry. Here’s an example below

1. Set your timeline frames to (for example) 20 frames.
2. The frame 0 will be lower position.
3. The frame 10 will be the neutral position.
4. The frame 20 the higher position.

The engine works as follows: It verifies the position in the y axis of the suspension and finds the right
frame to match the animation to the position of the physical suspension. It will interpolate the frames to
generate a smooth movement. Assetto Corsa will search for the following NULL/DUMMY objects, named
as follows:

SUSP_LF
SUSP_LR
SUSP_RF
SUSP_RR

The NULL/DUMMY must be designed to move the
suspension on the Y axis. Example of how to
animate a suspension correctly:

NOTE: Before exporting the FBX, timeline needs to
be set with the same number of total frames as the
number of animated frames created.
Example: If you animate 20 frames, do not export
with a timeline of 30. This will cause a crash.
Remember to set the timeline to 20 if you have
animated 20 frames. Empty frames will cause a
crash and are not supported.

Suspension Hierarchy

The suspension must have the hierarchy identical to one of the two FBX examples provided:

TEMPLATE_Suspension_EASY.fbx and TEMPLATE_Suspension_COMPLEX.fbx

The first scene contains a simple suspension hierarchy, made for a car with simple suspension system.
The second is prepared for complex suspension hierarchy, like 60’s Formula 1 cars, with more complex
arms and particular suspensions. Those examples contains more DUMMY/NULLs

Some names can be customized and we have named the customizable DUMMY/NULL in an appropriate
way, inside the template.fbx
”Custom_name##”. (where # is a number)
All the DUMMY/NULL are used for animated parts. Their use is optional. You can create the necessary
number of DUMMY/NULL as you desire.

The following DUMMY/NULLs are mandatory:

Suspension Nulls:
SUSP_LF Left Front
SUSP_LR Left Rear

SUSP_RF Right Front
SUSP_RR Right Rear

Hub Nulls:

HUB_LF Left Front
HUB_LR Left Rear

HUB_RF Right Front
HUB_RR Right Rear

Wheels Nulls:
WHEEL_LF parent of the TYRE_LF for the tyre mesh, RIM_LF for the Rim mesh,

and RIM_BLUR_LF for the Rim Blurred mesh

WHEEL_LR parent of the TYRE_LR for the tyre mesh, RIM_LR for the Rim mesh,

and RIM_BLUR_LR for the Rim Blurred mesh

WHEEL_LR parent of the TYRE_LR for the tyre mesh, RIM_LR for the Rim mesh,

and RIM_BLUR_LR for the Rim Blurred mesh

WHEEL_RR parent of the TYRE_RR for the tyre mesh, RIM_RR for the Rim mesh,

and RIM_BLUR_RR for the Rim Blurred mesh

In some cars, the transmission shafts might be visible. There is a convention name to animate these
objects automatically.

Transmission DUMMY/NULL names:
TRANSMISSION_L_1 for the Left shaft
TRANSMISSION_R_1 for the Right shaft

If you have more transmission pieces to animate, you can use sequential of numbering. For example:
TRANSMISSION_L_2 , TRANSMISSION_L_3 and so on. The same applies to TRANSMISSION_R_2
and so on.
The engine recognizes the prefix “TRANSMISSION_L_” and looks for a sequential number after it. There
is no hard-coded limit on the number of transmission parts that can be animated.

The transmission nulls rotate on the X axis and needs to be
oriented like the image below:

This node is useful for animating the joint on the Y axis
according to the suspension animation, and the engine
automatically rotates the transmission according to the wheel
on X axis. Avoid animating on the
Z axis, as it is not used.

NOTE: In order to have a correct direction of rotation, the Z
axis of the transmission nulls always need to point forward.

The engine recognizes 4 other nodes for the the hubs of every
wheel. These nodes are designed to allow the hub to rotate in
accordance with the camber of the wheel.

HUB_LF
HUB_LR
HUB_RF
HUB_RR

In the above image example, the hub is the parent of the steer arms.

This way you can animate up and down movements of the hub or the suspension and during the
animation you can change the camber of the hub as required by the actual physical suspension layout.
Inside the TEMPLATE_Suspension_COMPLEX.fbx you can find an example for the correct hierarchy.
Note: The SUSP_ node must always match the position of the Wheel_ node. The AC engine verifies the
position of the suspension in 3D space by checking the SUSP_ node. The wheel bounding box is
recognized between the SUSP_ node and Wheel_ node. Those 2 positions must be the same.
Again the FBX file TEMPLATE_Suspension_COMPLEX.fbx is a perfect example.

STEER ARMS and DIRECTION CONSTRAINTS
We can animate many different parts and just import the animation to the editor and from that export to
the game, but the STEER arm cannot be animated. Its position changes in the 3D space according to the
HUB rotation.

In order to constrain the movement of the steer arm to the HUB’s position and rotation, the convention
name with a prefix “DIR_customName” must be used. This indicates the direction of the X negative axis
of this mesh, and the null called “customName” will point the X axis to the correct direction.

Example: a null called “SteerArm_L” will point the negative X axis in direction of a null named
“DIR_SteerArm_L”
Pay attention to the rotation of the null which the animated mesh is linked to. In the image below the
right-hand side Null point has a positive Z axis. The left Null point has a negative Z axis. This allows the
-X axis to point to the center of the car or any other direction required by the mesh.
Inside the TEMPLATE_Suspension_COMPLEX.fbx file, you can find a proper hierarchy example.

Note: You can create more constraints, if you have more objects to constraint to the HUB by simply giving
them different names. Nevertheless, it is always good in terms of optimization to use the lowest possible
number of constraints.
You can animate your custom nulls in the following vectors: Rotation - Translation - Scale.
Inside the TEMPLATE_Suspension_COMPLEX.fbx example file, you can see the animation of the
suspension spring, on SCALE Y .
Note: Never animate the mesh. Always animate the NULLs only! With this approach you can change and
update your mesh every time you want without re-exporting the animations. Use the same technique to
create animations for any NULL that has to be animated. For example, doors, gearbox levers, or any
other parts.

CONSTRAINT FULL ANIMATION SETUP

If you don’t want animate the suspension manually you can create a full CONSTRAN setup.
You can use the DIRECTION CONSTRAINT logic to force you suspension to work automatically without
animate them
A example of this kind of suspension setup can be found in the EXAMPLE FBX provided with the SDK.
Costraint_suspension_Only.fbx for generic FBX 2014 version
Costraint_suspension_Only_XSI_2014.scn for XSI 2014 version
Costraint_suspension_Only_MAX_2013.scn for 3ds MAX 2013 version

ANIMATION EXPORT

Once you have animated your NULL/DUMMY inside your scene, using the AC Editor you need to export
the animation to an AC-specific clip format, called name.ksanim.

A couple of rules must be followed:
1) To generate a clip, you only need to animate the nulls.
Animating the mesh itself is not needed. You can also export the
mesh, but the editor will only export the objects/nulls that have
animation keyframes. As we mentioned before, it is a good
technique to animate only the NULL/DUMMY so that you can
change your animation independently from the actual 3D mesh.

2) When you export an animated null, you must also export the
the hierarchy tree above it, as the name of an object inside the
editor is determined by its position in the hierarchy tree.

3) Always export using the FBX format, as it is the only format that supports animation. Do not use any
other formats.

In the example shown in the image above, we have two null hierarchies that contain meshes as their
children. We have animated the shift and steer paddle and we need to export the animation.

We cannot export the SHIFT PADDLE_L null only. We must take the entire hierarchy from COCKPIT_HR,
including STEER_HR and SHIFT paddle_L.

This way the editor will define the null related to the position of SHIFT PADDLE_L in the hierarchy.

OPTIMISING ANIMATIONS

1) The frames are interpolated in the game. You don't need to export an animation with all the keyframes.
For simple animations, like doors, gear levers and so on, you can export just the important frames only.
For a simple door animation, the “close” and “open” frames are enough, the game will interpolate the rest.
When you have more complex doors, with pistons, vertical openings, like those in a Mclaren P1, you can
add more frames to animate the door in a more precise way. But always keep in mind that the less frame
you use, the more optimized the result will be, because the engine interpolates smoothly between the
keyframes.

2) Identical frames are optimized. If you create multiple identical frames, and the variation between them
is 0, the frames will be optimized.

Example: A gear lever starts animation at frame 15 of the complete animation, because during previous
frames it stays fixed to its position, waiting for the driver’s hand to first reach it. A keyframe must be
placed to frame 0 and another one at frame 14, both in static position. The animation of the gear lever
starts at frame 15.There is no need to place more keyframes between 0 and 14.

CLIPS AND NAMING CONVENTIONS

There are two types of pre-programmed playbacks:

1) Ping-pong: The animation played reaches the end is then played in reverse from back to start.
2) Loop: When the first frame match the last frame and the animation restarts the loop.

The specific naming conventions have a pre-programmed playback in-game, so the engine knows
whether the playback should be LOOP or PING-PONG..

DRIVER ANIMATION CLIP NAMES:

steer.ksanim Loop for the rotation of the driver’s arms on the steering wheel
shift.ksanim PingPong for the animation of the driver’s arm to the gearshift lever (we
 usually do a simple animation, check the fbx example)
shift_dw.ksanim PingPong for the animation of the fingers that operate the paddle to shift down
 (usually left)
shift_up.ksanim PingPong for the animation of the fingers that operate the paddle to shift up
 (usually right)

CAR ANIMATION CLIP NAMES

car_shift.ksanim PingPong to animate the car gear lever
Important: this clip must have the same number of frames as the shift.ksanim to match the arm
movement with the shift animation. If in the driver animation, the shifting movement begins at frame 10,
the shifter must also start to move at the exact same frame!

car_susp_LF.ksanim Controlled by engine for the animation of the Left Front suspension
car_susp_LR.ksanim Controlled by engine for the animation of the Left Rear suspension
car_susp_RF.ksanim Controlled by engine for the animation of the Right Front suspension
car_susp_RR.ksanim Controlled by engine for the animation of the Right Rear suspension
car_door_R.ksanim PingPong for the animation to open the right-hand side door (the closing
animation should be the open animation in reverse. Do not animate the closing sequence!)
car_door_L.ksanim PingPong for the animation to open the right-hand side door (the closing
animation should be the open animation in reverse. Do not animate the closing sequence!)
car_wiper.ksanim Loop for the animation of the wiper (here you must animate the full animation
back and forth)
lights.ksanim PingPong for the animation of the car lights that are dynamic (e.g. Ferrari F40.
Animate the opening sequence ONLY).
car_shift_up.ksanim PingPong for animating the paddle shift up
car_shift_dw.ksanim PingPong for animating the paddle shift down

Note: You can create all the animations needed. You can also use new names and then engage them
from an .ini script (such as active DRS, wings etc.). The names listed above are recognized automatically
and managed by the game engine.

For example: the animation car_wing.ksnim is a custom name. On certain cars we created animations
called wing_rear.ksanim or wing_side.ksanim. These optional animations are managed from .ini scripts.

car_wing.ksanim PingPong for the animation of dynamic wings (animate only opening sequence)

EXPORTING ANIMATIONS FROM THE EDITOR

Follow these steps to export animations:
- Open the car FBX in the editor.
- Open the ANIMATION with the Open FBX Animation option under the File tab (see below):

- Find and load the FBX animation that you had previously exported to the “animations” folder.

When an animation is loaded it automatically saves a clip_name.ksanim file in the same folder where your
FBX file is located, there is no need to manually export the animation clip.

- Select the Animation tab at the bottom part of the editor UI. Drag the animation slider, and you should
see the animation playback.

You can load multiple animations into the scene. Every time you load an animation, a .ksanim file is
saved with the same name as the source FBX.
If your fbx is not named properly, you have to rename your clips to match our name conventions, for
example steer.ksanim for the animation of the driver arms etc.

CHECKING CAR ANIMATIONS

When all your suspensions clips are exported to the proper animation folder (see “Project Structure”
section), you can load your car.fbx in the editor and check if the animations work properly.
You can do this only after you have created the animation clips and by loading them into the editor.

NOTE: LOD B must contain the same null hierarchy and names of animated nulls as LOD A for the
exterior (suspension, wings, pop-up lights), but not for animations in the HR interior (paddle and shifter)
and the doors nulls under the Cockpit_HR null.

Open you car_name.fbx

After the car is loaded, you can load the clip of the suspension that you want to test.
In the tab called “Car Animations” you’ll find sliders. These are designed to help you test the animation of
the springs, the constraint of the arms and the wheel rotation.

The sliders allow you to check the suspension in the editor and detect any issues, frame by frame. Here
you can see an example: Moving the slider you can check the hub behaviour.

GENERIC ANIMATION EXPORTING GUIDELINES

There are some important things to keep in mind when exporting animations, especially door animation
clips. When exporting a door clip, the following hierarchy should be present:

Complex door animations
may include a higher number
of nulls, make sure that the
naming conventions are
consistent and that you export
every null that is animated
(per side). For more
information, see ANIMATION
EXPORT.

Note that the meshes and
nulls of the interior door
elements are under the null,
COCKPIT_HR. This is

needed because the cockpit switches from high to low resolution. The LR door will be hidden. So we have
duplicated the door animation nulls with animation included, and placed them outside of COCKPIT_HR.
When you export, remember to include all the cockpit door nulls (left image).

NOTE: When exporting the animation of the paddle shifters (car_shift_dw and car_shift_up), make sure
that you export the parent nulls as well. If the paddles are on the steering wheel, for each animation you
have to export either of the paddle nulls (SHIFT_R or SHIFT_L), the null for the steering wheel
(STEER_HR) and the HR cockpit null (COCKPIT_HR).

To animate wipers, you may use a number of nulls depending on the complexity of the wiper. Usually a
wiper with 2, maximum 3 pivot points (and thus 2 or 3 dummies) is sufficient.
The wiper nulls must be located in the root of the scene and they must be present in LOD A through
LOD C.

8. MATERIALS AND AC EDITOR

In the following section you will find information about how to use the AC editor and guidelines for setting
up materials.

MATERIAL NAMING CONVENTIONS

Please use the following conventions for naming materials in your 3D software. Firstly, ALWAYS indicate
whether it is for the interior or exterior (INT_ or EXT_), then indicate the name that is straightforward
(usually indicating the texture it is using) and lastly indicate if it has to use a certain transparency property,
such as AT for alpha test. When possible, use the following names:
EXT_Tyre
EXT_Rim
EXT_Rim_blur
EXT_Rim_blur_Alpha transparent blurred rim part (use alpha blend mode and transparency ON)
EXT_Carpaint
EXT_Carbon
EXT_Details_AT for labels and logos (use alpha test mode with transparency OFF)
EXT_Details_Plastic Details=using the exterior details texture
EXT_Details_Metal
EXT_Details_Chrome
EXT_Engine
EXT_Disc
EXT_Caliper
EXT_Window
EXT_Lights_Glass
EXT_Lights_Chrome

INT_Details_AT for labels and logos (alpha test mode with transparency OFF)
INT_Details_Plastic Details=using the interior details texture
INT_Details_Chrome
INT_Details_Metal_Black
INT_Details_Metal_Flat
INT_Details_Gauges
INT_OCC_Carbon OCC=using the ambient occlusion texture
INT_OCC_Leather
INT_OCC_Alcantara
INT_OCC_Plastic
INT_OCC_Metal
INT_BELT
INT_LCD ALWAYS keep the digital display on a separate texture (for racing cars)
INT_FUEL_INDICATOR material with emissive for the fuel warning light

If needed, you can use multiple materials (for multiple carbon patterns), in this case, make a distinction
with numbers or name (e.g. INT_OCC_Carbon_Flat and INT_OCC_Carbon_Refl). In any case, strive to
differentiate exterior and interior materials.

NOTE: For a more comprehensive guide and community tips to use the editor, see the following thread
on the official support forum:
http://www.assettocorsa.net/forum/index.php?threads/ac-editor.10964/

NOTE: to find useful information and request help for general editor and shader-related issues, see the
following thread on the official support forum:
http://www.assettocorsa.net/forum/index.php?threads/car-materials-shaders-modelling-stuff-add-your-kno
wledge-here.19704/

Basic guide to the KS EDITOR:

When you first open the editor, make sure you save the layout and set your preferences under
Utilities/Data Editor.

http://www.assettocorsa.net/forum/index.php?threads/ac-editor.10964/
http://www.assettocorsa.net/forum/index.php?threads/car-materials-shaders-modelling-stuff-add-your-knowledge-here.19704/
http://www.assettocorsa.net/forum/index.php?threads/car-materials-shaders-modelling-stuff-add-your-knowledge-here.19704/

You can use the built-in Project Manager to save and manage projects:

Scene illumination in the editor can be changed under the Illumination tab:

You can review your textures using the Texture Review tool under Utilities/Texture Review (option only
visible when a model is loaded).

It is recommended you keep your texture folder organised. You can back up your unused textures with
the “Move Selected in backup folder” button.

You can use a Copy&Paste tool to copy existing shader properties to a second material.
Note that first you need to select the correct shader (if source is ksPerpixelMultimap, the target needs to
be a multimap material as well and so on), then fill in the shader slots manually! After these steps are
done, you can use the tool under Material Tools to copy and paste the shader values, as follows:

Transparencies and cast shadow settings can be applied globally to materials under the Materials tab:

Persistence files (containing shader and object settings) can be saved under File. You can also load
existing persistence files from higher LODs. Note that loading a persistence file on a new export will only
transfer shader settings, transparencies and cast shadow settings will have to be set manually. However,
for later persistence updates using the load function (once the transparencies are set), the transparencies
will not have to be set again.

General guidelines to using different alpha modes:

Where possible try to avoid using Alpha Blend mode. Blend requires transparency, which can cause
issues with draw priorities, because some objects can be viewed from two directions.
A common issue is the interior: interior objects sometimes (such as the transparent interior windshield
banner) need a priority set to 1 to avoid the object being drawn before the external glass objects when
viewed from outside.
However, from cockpit view, this can cause issues with the blurred rim on opponent cars, because the
blurred spokes object with a priority of 0 will draw before the interior banner, if for example it goes around
the windshield.
Of course, Alpha Blend mode is still required for glass objects and the blurred rim spokes.

When using priorities, make sure the priority is applied on the object level, not the sub-object level.
Additionally, if the transparent object is linked to a helper, you have to assign the priority on the highest
level in the hierarchy, thus the helper itself (see the section about Damage Glass).

It is recommended to detach all transparent object as separate objects in your 3D software before
exporting. AVOID including transparent objects in a group object with multiple material IDs. This is very
important because otherwise adding a new materiaI ID later on could cause the transparency and cast
shadow settings to “migrate” to another subobject, incorrectly assigning transparency to otherwise
opaque pieces of mesh.

Alpha Test mode usually works to a satisfying level when the alpha has no gradient. Alpha Test requires
no transparency, which is why no issues will arise if more layers are in front of one another. In Alpha Test
materials, transparency is defined by the Alpha channel in the Normal Map.

Alpha Test mode can also be used to hide certain objects using a simple texture (make sure you disable
shadow casting for those objects). Remember that you control transparency with the Normal Map alpha
channel.

Opaque mode is required for non-transparent objects, or where the shape of objects is defined by the
mesh. Make sure you don’t group objects with different properties in this respect under the same material.
If you have objects that require the alpha channel to define their border, group them under a new
material. As a general rule, keep alpha and non-alpha objects in separate materials.

Guide to shader types

Below you find a few shader types used for specific parts of the vehicle, showing the recommended
shader and blending mode (note that other properties are merely representative):

9. IN-GAME CONSOLE COMMANDS

Lights (front, rear, brakes), Flames, Digital Instruments, Panels and Ground collider can be adjusted
real time in-game by using the built-in console commands.
Press HOME to open the in-game command window.

Type one of the commands below to enter edit mode (case sensitive!).

● set observeLights [value]
● set observeFlames [value]
● set observeDigital [value]
● set observePanel [value]
● set editBoxes [value]

[Value] can be 1 (game will read the new values in the ini file) or 0 (game will not read the new values;
this is the default value). The commands are CASE SENSITIVE. When set to 1, changes to the script in
the respective text file will appear in the game real-time.

Contributors:

Gergő Panker - lead 3D artist, vehicle production managment @pankykapus
Gianluca Miragoli - lead 3D artist, technical lead @yashugan
Manuel Darin - staff programmer, beta testing management @6S.Manu
Marc Orphanos - external 3D artist, driver rig @the_meco

